Exponential_Family_Distribution_03

2022年10月

Posted by franztao on October 24, 2019

本小节主要介绍Exponential Distribution中对数配分函数和充分统计量,还有极大似然估计和充分统计量的关系。

指数族分布的基本形式可以表示为:

\[\begin{gather} p(x|\eta) = h(x)exp\left\{ \eta^T\varphi(x)-A(\eta) \right\} \\ p(x|\eta) = \frac{1}{exp \{A(\eta)\}} h(x)exp\left\{ \eta^T\varphi(x)\right\} \end{gather}\]

对数配分函数和充分统计量}

现在有一个问题,那就是我们如何求得对数配分函数$exp{ A(\eta) }$,或者说我们可不可以简单的求得对数配分函数。于是,就可以很自然的想到,前面所提到的充分统计量$\varphi(x)$的概念。对数配分函数的目的是为了归一化,那么我们很自然的求出对数配分函数的解析表达式:

\[\begin{equation} \begin{split} \int p(x|\eta) dx = & \int \frac{1}{exp \{A(\eta)\}} h(x)exp\left\{ \eta^T\varphi(x)\right\} dx\\ \int p(x|\eta) dx = & \frac{\int h(x)exp\left\{ \eta^T\varphi(x)\right\} dx}{exp \{A(\eta)\}} = 1 \\ exp \{A(\eta)\} = & \int h(x)exp\left\{ \eta^T\varphi(x)\right\} dx \end{split} \end{equation}\]

下一步则是在$exp {A(\eta)}$中对$\eta$进行求导。

\[\begin{equation} \begin{split} \frac{\partial exp \{A(\eta)\}}{\partial \eta} = & exp \{A(\eta)\} \cdot A'(\eta) \\ = & \frac{\partial}{\partial \eta}\int h(x)exp\left\{ \eta^T\varphi(x)\right\} dx \\ = & \int \frac{\partial}{\partial \eta} h(x)exp\left\{ \eta^T\varphi(x)\right\} dx \\ = & \int h(x)exp\left\{ \eta^T\varphi(x)\right\}\varphi(x) dx \\ \end{split} \end{equation}\]

将等式的左边的$exp {A(\eta)} $移到等式的右边可得,

\[\begin{gather} A'(\eta) = \int h(x)exp\left\{ \eta^T\varphi(x) - A(\eta)\right\}\varphi(x) dx \\ A'(\eta) = \int p(x|\eta)\varphi(x)dx \\ A'(\eta) = \mathbb{E}_{x \sim p(x|\eta)}[\varphi(x)] \end{gather}\]

其实通过同样的方法可以证明出,

\[\begin{equation} A''(\eta) = Var_{x \sim p(x|\eta)}[\varphi(x)] \end{equation}\]
又因为,方差总是恒大于等于零的,于是有$A’’(\eta)\geq 0$。所以,由此得出$A(\eta)$是一个凸函数。并且,由$\mathbb{E}_{x \sim p(x \eta)}[\varphi(x)]$和$Var_{x \sim p(x \eta)}[\varphi(x)]$就可以成功的求解得到$A(\eta)$函数。那么我们做进一步思考,知道了$\mathbb{E}[x]$和$\mathbb{E}[x^2]$,我们就可以得到所有想要的信息。那么,
\[\begin{equation} \mathbb{E}[\varphi(x)] = \begin{pmatrix} \mathbb{E}[x] \\ \mathbb{E}[x^2] \end{pmatrix} \end{equation}\]

极大似然估计和充分统计量}

假设有一组观察到的数据集:$D=\left{ x_1, x_2, x_3, \cdots, x_N \right}$,那么我们的求解目标为:

\[\begin{equation} \begin{split} \eta_{MLE} = & argmax \log \prod_{i=1}^N p(x_i|\eta) \\ = & argmax \sum_{i=1}^N\log p(x_i|q) \\ = & argmax \sum_{i=1}^N\log h(x_i) exp \left\{ \eta^T\varphi(x_i) - A(\eta) \right\} \\ = & argmax \sum_{i=1}^N\log h(x_i) + \sum_{i}^N\eta^T\varphi(x_i) - A(\eta) \\ \end{split} \end{equation}\] \[\begin{gather} \frac{\partial}{\partial \eta} \left\{ \sum_{i=1}^N\log h(x_i) + \sum_{i=1}^N\eta^T\varphi(x_i) - A(\eta) \right\} = 0 \\ \sum_{i=1}^N\varphi(x_i) = N A'(\eta) \\ A'(\eta) = \frac{1}{N}\sum_{i=1}^N\varphi(x_i) \end{gather}\]

或者说,我们可以认为是:$A’(\eta_{MLE}) = \frac{1}{N}\sum_{i=1}^N\varphi(x_i)$。并且,$A’(\eta_{MLE})$是一个关于$\eta_{MLE}$的函数。那么反解,我们就可以得到$\eta_{MLE}=(A^{(-1)}(\eta))’$。所以我们要求$\eta_{MLE}$,我们只需要得到$\frac{1}{N}\sum_{i=1}^N\varphi(x_i)$即可。所以,$\varphi(x)$为一个充分统计量。

总结}

在本小节中,我们使用了极大似然估计和对数配分函数来推导了,充分统计量,这将帮助我们理解Exponential Distribution的性质。